This study was performed within the PAN-CNR scientific cooperation programme (project $03 \cdot 10$ of PAN).

References

Alden, R. A., Kraut, J. \& Traylor, T. G. (1968). J. Am. Chem. Soc. 90, 74-82.

Hofmann, A. A., Wyrsch-Walraf, I., Iten, P. X. \& Eugster, C. H. (1979). Helv. Chim. Acta, 62, 2211-2217.

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Jurczak, J., Koźluk, T., Tkacz, M. \& Eugster, C. H. (1983). Helv. Chim. Acta, 66, 218-221.
Sheldrick, G. M. (1975). SHELX. Program for crystal structure determination. Univ. of Cambridge, England.

Acta Cryst. (1987). C43, 1971-1973

\boldsymbol{p} - and \boldsymbol{o} - $\mathrm{Bis}(\boldsymbol{N}, \mathrm{N}$-diacetylamino)benzene

By B. Beagley, W. T. Flowers, A. Hafees and R. G. Pritchard
Department of Chemistry, The University of Manchester Institute of Science and Technology, PO Box 88, Manchester M60 1QD, England

(Received 1 April 1987; accepted 19 May 1987)

Abstract. $p-\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$ (I): $M_{r}=276 \cdot 29$, monoclinic, $C 2 / m, a=13.883$ (8), $b=6.967$ (3), $c=7.720$ (1) \AA, $\beta=112.42(3)^{\circ}, \quad V=690.26 \AA^{3}, \quad Z=2, \quad D_{x}=$ $1.329 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda($ Mo K $\alpha)=0.71069 \AA, \quad \mu=$ $0.106 \mathrm{~mm}^{-1}, F(000)=292, T=293 \mathrm{~K}, R=0.044$ for 797 reflexions with $F>3 \sigma(F)$. $o-\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$ (II): $M_{r}=276 \cdot 29$, monoclinic, $C 2 / c, a=29.546$ (9), $b=$ 9.626 (2), $\quad c=16 \cdot 126$ (5) $\AA, \quad \beta=113.37$ (3) ${ }^{\circ}, \quad V=$ $4210.13 \AA^{3}, Z=12, D_{x}=1.307 \mathrm{Mg} \mathrm{m}^{-3}, \lambda($ Mo $K \alpha)$ $=0.71069 \AA, \mu=0.10 \mathrm{~mm}^{-1}, \quad F(000)=1752, T=$ $293 \mathrm{~K}, R=0.057$ for 2488 reflexions with $F>3 \sigma(F)$. All of the diacetylamino groups in (I) and (II) adopt the usual syn-anti configuration. Structure (I) displays crystallographic $C_{2 h}$ symmetry with the diacetylamino functions lying in a mirror plane at right angles to the benzene ring. Structure (II) is composed of two conformers, one of which is bisected by a crystallographic twofold axis and the other, although similar, is asymmetric.

Introduction. Several structures are known in which a diacetylamino (DAA) group is bound to an $s p^{2} \mathrm{C}$, e.g. amino sugars (Ružic-Toroś, Rogić \& Kojić-Prodić, 1980), but it is only in 6 -(N, N-diacetylamino)chrysene (Wieckowski \& Krygowski, 1981) that the bonded C atom forms part of a delocalized hydrocarbon. The present work offers several opportunities to study this type of system, of which (I) is the first example where both ring substituents flanking the DAA groups are H atoms.

Experimental. The tetraacetyl compounds were prepared by treating the respective diamines with excess
acetic anhydride under reflux for 2 h ; residual acetic anhydride and acetic acid were removed in vacuo, and the acetylation procedure repeated twice. The resultant mixtures of tri- and tetraacetyl derivatives were extracted with $60-80^{\circ}$ petroleum ether and evaporated to give the tetraacetyl derivatives, which were recrystallized from aqueous ethanol.
(I): Colourless $0.2 \times 0.2 \times 0.4 \mathrm{~mm}$; CAD-4 diffractometer, graphite-monochromatized Mo $K \alpha$ radiation; lattice parameters from 25 reflexions ($10.0<$ $\left.\theta<10.9^{\circ}\right) ; \omega-2 \theta$ scan; $-18<h<18,0<k<9$, $0<l<10$ with $0<\theta<25^{\circ}$; no systematic variations in intensities of standards (330, $\overline{6} 03,71 \overline{1}) ; 1107$ reflexions, 797 with $F>3 \sigma(F) ; R_{\text {int }}=0.013 ; \mathrm{Lp}$ correction applied but absorption ignored; direct methods, MULTAN80 (Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1980); anisotropic full-matrix refinement on F, SHELX 76 (Sheldrick, 1976), H (from ΔF synthesis) isotropic; empirical extinction correction applied where $F_{c}^{*}=$ $F_{c}\left(1-0.00000825 F_{c}^{2} / \sin \theta\right)$; final $R=0.044, w R=$ $0.050, \quad w=4 \cdot 127 /\left[\sigma^{2}\left(F_{o}\right)+0.00004 F_{o}^{2}\right] ; \quad \max . \quad \Delta / \sigma$ $=0.04$ for x of $O(12)$; all features in final ΔF synthesis between -0.25 and $+0.25 \mathrm{e}^{-3}$.
(II): Colourless $0.2 \times 0.3 \times 0.4 \mathrm{~mm}$; CAD-4 diffractometer, graphite-monochromatized Mo $K \alpha$ radiation; lattice parameters from 25 reflexions ($8.3<\theta<9.3^{\circ}$); $\omega-2 \theta$ scan; $-31<h<31,0<k<11,0<l<18$ with $0<\theta<25^{\circ}$; no systematic variation in intensities of standards ($8 \overline{2} 2,12,0,0,6 \overline{3} 3$); 4011 reflexions, 2488 with $F>3 \sigma(F) ; R_{\text {int }}=0.023 ; \mathrm{Lp}$ correction applied but absorption ignored; direct methods, MULTAN80; anisotropic full-matrix refinement on $F, S H E L X 76$, H
© 1987 International Union of Crystallography
(riding on heavier atoms) isotropic; empirical extinction correction applied where $F_{c}^{*}=$ $F_{c}\left(1-0.000001 F_{c}^{2} / \sin \theta\right)$; final $R=0.057, w R=0.070$, $w=2.6713 /\left[\sigma^{2}\left(F_{o}\right)+0.00015 F_{o}^{2}\right] ; \max . \quad \Delta / \sigma=0.07$ for U of $\mathrm{H}(221 A)$; all features in final ΔF synthesis between -0.30 and $+0.18 \mathrm{e} \AA^{-3}$. Scattering factors from International Tables for X-ray Crystallography (1974). Computations carried out on the joint CDC 7600/Amdahl 470V8 system of the University of Manchester Regional Computing Centre. The Cambridge Structural Database was surveyed using the Crystal Structure Search Retrieval (1984) interactive system.

Fig. 1. p-Bis(diacetylamino)benzene (I) drawn using PLUTO (Motherwell \& Clegg, 1978).

Fig. 2. o-Bis(diacetylamino)benzene (II). Methyl H atoms have been omitted for clarity.

Fig. 3. Crystal packing in (I) projected on to the $a c$ plane.

Table 1. Fractional atomic coordinates $\left(\times 10^{4}\right)$ and vibrational parameters $\left(\AA^{2} \times 10^{4}\right)$ for non -H atoms

	x	y	z	$U_{\text {eq }}{ }^{*}$
Molecule (I)				
C(1)	6027 (1)	5000	1197 (2)	459
C(2)	5520 (1)	3282 (2)	605 (2)	554
N(1)	7111 (1)	5000	2453 (2)	470
C(11)	7832 (2)	5000	1555 (3)	560
O(11)	7494 (1)	5000	-132 (2)	855
C(12)	8969 (2)	5000	2685 (4)	805
C(13)	7362 (2)	5000	4393 (2)	543
O(12)	8249 (1)	5000	5510 (2)	858
C(14)	6462 (2)	5000	5008 (4)	749
Molecule (IIA)				
$\mathrm{C}(1 A)$	1536 (1)	3675 (3)	6485 (2)	503
C(2A)	1821 (1)	4800 (3)	6912 (2)	526
C(3A)	1894 (1)	5101 (4)	7798 (2)	682
$\mathrm{C}(4 A)$	1691 (1)	4254 (4)	8253 (2)	767
C(5A)	1418 (1)	3103 (4)	7834 (2)	778
C(6A)	1341 (1)	2813 (4)	6947 (2)	666
$\mathrm{N}(1 A)$	1434 (1)	3388 (3)	5548 (2)	534
$\mathrm{C}(11 A)$	1787 (1)	2552 (4)	5400 (2)	630
$\mathrm{O}(11 A)$	2131 (1)	2145 (3)	6062 (2)	935
C(12A)	1741 (2)	2200 (5)	4473 (3)	923
C(13A)	993 (1)	3878 (4)	4871 (2)	700
$\mathrm{O}(12 A)$	910 (1)	3745 (4)	4087 (2)	1271
$\mathrm{C}(14 A)$	627 (1)	4544 (4)	5171 (3)	746
$\mathrm{N}(2 A)$	2044 (1)	5660 (3)	6444 (2)	560
$\mathrm{C}(21 A)$	1771 (1)	6807 (4)	5972 (2)	633
$\mathrm{O}(21 A)$	1363 (1)	6976 (3)	5955 (2)	1019
C(22A)	1991 (1)	7843 (4)	5552 (3)	833
C(23A)	2510 (1)	5310 (4)	6462 (2)	715
$\mathrm{O}(22 A)$	2629 (1)	5658 (3)	5867 (2)	1206
C(24A)	2849 (1)	4503 (5)	7277 (3)	843
Molecule (IIB)				
C(1B)	5034 (1)	6078 (3)	7100 (2)	515
$\mathrm{C}(2 B)$	5078 (1)	7324 (3)	6715 (2)	684
C(3B)	5043 (2)	8555 (4)	7112 (3)	845
$N(1 B)$	5067 (1)	4791 (3)	6674 (2)	529
C(11B)	5512 (1)	4019 (4)	7107 (2)	637
$\mathrm{O}(11 B)$	5858 (1)	4618 (3)	7673 (2)	870
C(12B)	5518 (2)	2521 (4)	6904 (3)	942
C(13B)	4725 (1)	4495 (4)	5791 (2)	624
$\mathrm{O}(12 B)$	4810 (1)	3599 (3)	5344 (2)	897
C(14B)	4264 (1)	5329 (4)	5433 (2)	810
$* U_{\mathrm{eq}}=\frac{1}{3} \sum_{i} \sum_{j} U_{i j} \mathrm{a}_{i} \cdot \mathrm{a}_{j} a_{i}^{*} a_{j}^{*}$				

Discussion. Molecules (I) and (II) are illustrated in Figs. 1 and 2 respectively with an additional view of (I) showing the crystal packing presented in Fig. 3. The atomic coordinates are given in Table 1^{*} and bond lengths and angles in Table 2. Compound (I) has crystallographic $C_{2 h}$ symmetry; the configuration of the DAA groups is syn-anti, with these groups lying in a mirror plane. The benzene ring is centred on inversion points at $\frac{1}{2}, \frac{1}{2}, 0$ or $0,0,0$ and lies at right angles to the m plane. The four acetyl π systems on each molecule overlap those from eight other molecules at interplanar spacings of $b / 2$ to form infinite acetyl stacks parallel to b. Within each molecule the orthogonal DAA and benzene π systems support the view of Wieckowski \& Krygowski (1981) that, in 6 -(N, N-diacetylamino)chrysene, the chrysene and DAA systems deviate from

[^0]Table 2. Selected bond lengths (\AA), angles $\left({ }^{\circ}\right)$ and torsion angles (${ }^{\circ}$)

Symmetry code: (i) $1-x, y,-z$; (ii) $x, 1-y, z$; (iii) $1-x, y, \frac{3}{2}-z$.
being exactly perpendicular because of asymmetric chrysene bond lengths at the point of substitution. These workers also correlated the expanded valence angle in chrysene [122.1 (2) ${ }^{\circ}$] with the electron-withdrawing effect of DAA in accordance with Walsh's (1947) rule. This expansion is seen to a lesser though significant extent in (I) $\left[C(2)-C(1)-C\left(2^{i i}\right)=\right.$ $121.0(2)^{\circ}$] and would place the electron-withdrawing influence of DAA alongside CN and SO_{3}^{-}according to
a survey of para-substituted benzenes (Domenicano \& Murray-Rust, 1979).
The configuration of (II) is such that the free molecule would be bisected by a twofold axis as in (I). However, due to packing forces, only one of the two crystallographically independent molecules [(IIB)] retains this symmetry. In contrast to (I) the maintenance of planar ortho-DAA groups at right angles to the benzene ring would cause unfavourable steric interactions between $\mathrm{C}(14), \mathrm{C}(24)$ and $\mathrm{O}(21), \mathrm{O}(11)$. This has been avoided in (ILA) by tilting the DAA groups, moving $\mathrm{C}(14 A)$ away from $\mathrm{O}(21 A)[3 \cdot 10(1) \AA$] with an associated twist around $\mathrm{N}(2)-\mathrm{C}(23)$ to give an $\mathrm{O}(11 A) \cdots \mathrm{C}(24 A)$ distance of $3 \cdot 19$ (1) \AA. In (IIB) the mutual orientations of the DAA groups and the benzene ring deviate considerably from being perpendicular. Planar DAA groups in this situation would have unfavourable interactions, with $O(11)$ approaching $\mathrm{N}(1)$ and $\mathrm{C}(13)$ in the adjacent DAA. This has been limited in (ILB) by distorting the DAA groups, primarily via twists about $\mathrm{N}(1)-\mathrm{C}(11)$ and $\mathrm{N}(1)-\mathrm{C}(13)$ (see Table 2). However, several short non-bonded contacts still remain: $\mathrm{C}(2 B) \cdots \mathrm{C}(13 B)$ $3.08(1), \mathrm{C}(2 B) \cdots \mathrm{C}(14 B) 3 \cdot 13(1), \mathrm{C}\left(1 B^{\text {iii }}\right) \cdots \mathrm{C}(11 B)$ $3 \cdot 13(1), \mathrm{C}\left(1 B^{\text {iii }}\right) \cdots \mathrm{O}(11 B) 3 \cdot 13$ (1), $\mathrm{N}\left(1 B^{\text {iiii }}\right) \cdots \mathrm{C}(11 B)$ $3 \cdot 17(1), \mathrm{N}\left(1 B^{\mathrm{iii}}\right) \cdots \mathrm{O}(11 B) 3 \cdot 30(1), \mathrm{O}\left(11 B^{\mathrm{iiii}}\right) \cdots \mathrm{C}(14 B)$ $3 \cdot 29(1) \AA \AA$, where (iii) denotes an atom at $1-x, y, \frac{3}{2}-z$, generated by the twofold axis. The highly symmetric crystal packing seen in (I) is absent from (II) and is reflected in its lower melting point [(II): 365, (I): 471 K].

The authors would like to thank the SERC for financial assistance with the purchase of equipment.

References

Crystal Structure Search Retrieval (1980). Instruction manual. SERC Daresbury Laboratory, Warrington, England.
Domenicano, A. \& Murray-Rust, P. (1979). Tetrahedron Lett. 24, 2283-2286.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain. Belgium.
Motherwell, W. D. S. \& Clegg, W. (1978). Pluto. Program for plotting molecular and crystal structures. Univ of Cambridge, England.
Ružić-Toroš, Z., Rogić, V. \& Kojić-Prodić, B. (1980). Acta Cryst. B36, 607-611.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Walsh, A. (1947). Discuss. Faraday Soc. 2, 18-25.
Wieckowski, T. \& Krygowski, T. M. (1981). Can. J. Chem. 59, 1622-1629.

[^0]: * Lists of structure factors, anisotropic vibrational parameters, H -atom parameters and complete geometry tables have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 44066 (28 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

